Facebook
From Violet Hog, 4 Years ago, written in Python.
This paste is a reply to Re: white_wine_quality from Botched Gibbon - go back
Embed
Viewing differences between Re: white_wine_quality and Re: Re: white_wine_quality
X=df.iloc[:, :-1].values
y=df.iloc[:, -1].values


adding extra column because of Multiple linear regression
X_select 
選擇試算表,我們創的試算表名稱叫做『我的投資情報專頁』
sh 
np.concatenate((X[:,9:10],X[:,10:11]), axis=1)
X_select_square 
gc.open('我的投資情報專頁')

# 再來選擇你要開始編輯的工作表,新創的試算表一定都會有一張原始工作表叫做『工作表1』
ws 
np.square(X_select)
X_select 
sh.worksheet('工作表1')

# 當然也可以透過 Python 新增工作表,列數欄數依據你的需求進行設定
sh.add_worksheet(title 
X
#X_square 
'新創一頁看看', rows np.square(X_select)
#X_select 
'5', cols np.hstack((X_select, X_select_square))
X_t=np.append(arr=np.ones((X_select.shape[0],1)), values=X_select, axis=1)

'3')

splitting the dataset
X_train, X_test, y_train, y_test 
查看這個試算表到底有哪些工作表
sh.worksheets()

# 選擇一個工作表,然後刪除它
ws 
train_test_split(X_select, y, test_size=0.5, random_state=0)



sh.worksheet('新創一頁看看')
sh.del_worksheet(ws)

scaling the dataset
from sklearn.preprocessing import StandardScaler
sc_X=StandardScaler()
X_train=sc_X.fit_transform(X_train)
X_test=sc_X.transform(X_test)



#linear regression
#from sklearn.linear_model import LinearRegression
#regressor=LinearRegression()
from sklearn.linear_model import LogisticRegression
regressor=LogisticRegression()
regressor.fit(X_train,y_train)



#Prediction
predictions=regressor.predict(X_test)
for i, prediction in enumerate(predictions):
    print('Predicted: %s, Target: %s' % (prediction, y_test[i]))
score 
選擇要上傳的 cell,設定上傳內容
update_cell 
regressor.score(X_test, y_test)
print('R-squared: %.2f' % regressor.score(X_test, y_test))
'A1'
update_content = '上傳單一資料'

# 上傳
ws.update_acell(update_cell, update_content)

Replies to Re: Re: white_wine_quality rss

Title Name Language When
Re: Re: Re: white_wine_quality Blush Hornbill python 4 Years ago.