X=df.iloc[:, :-1].values
y=df.iloc[:, -1].values
# adding extra column because of Multiple linear regression
X_select 選擇試算表,我們創的試算表名稱叫做『我的投資情報專頁』
sh = np.concatenate((X[:,9:10],X[:,10:11]), axis=1)
X_select_square gc.open('我的投資情報專頁')
# 再來選擇你要開始編輯的工作表,新創的試算表一定都會有一張原始工作表叫做『工作表1』
ws = np.square(X_select)
X_select sh.worksheet('工作表1')
# 當然也可以透過 Python 新增工作表,列數欄數依據你的需求進行設定
sh.add_worksheet(title = X
#X_square '新創一頁看看', rows = np.square(X_select)
#X_select '5', cols = np.hstack((X_select, X_select_square))
X_t=np.append(arr=np.ones((X_select.shape[0],1)), values=X_select, axis=1)
'3')
# splitting the dataset
X_train, X_test, y_train, y_test 查看這個試算表到底有哪些工作表
sh.worksheets()
# 選擇一個工作表,然後刪除它
ws = train_test_split(X_select, y, test_size=0.5, random_state=0)
sh.worksheet('新創一頁看看')
sh.del_worksheet(ws)
# scaling the dataset
from sklearn.preprocessing import StandardScaler
sc_X=StandardScaler()
X_train=sc_X.fit_transform(X_train)
X_test=sc_X.transform(X_test)
#linear regression
#from sklearn.linear_model import LinearRegression
#regressor=LinearRegression()
from sklearn.linear_model import LogisticRegression
regressor=LogisticRegression()
regressor.fit(X_train,y_train)
#Prediction
predictions=regressor.predict(X_test)
for i, prediction in enumerate(predictions):
print('Predicted: %s, Target: %s' % (prediction, y_test[i]))
score 選擇要上傳的 cell,設定上傳內容
update_cell = regressor.score(X_test, y_test)
print('R-squared: %.2f' % regressor.score(X_test, y_test))'A1'
update_content = '上傳單一資料'
# 上傳
ws.update_acell(update_cell, update_content)
Replies to Re: Re: white_wine_quality 
{"html5":"htmlmixed","css":"css","javascript":"javascript","php":"php","python":"python","ruby":"ruby","lua":"text\/x-lua","bash":"text\/x-sh","go":"go","c":"text\/x-csrc","cpp":"text\/x-c++src","diff":"diff","latex":"stex","sql":"sql","xml":"xml","apl":"apl","asterisk":"asterisk","c_loadrunner":"text\/x-csrc","c_mac":"text\/x-csrc","coffeescript":"text\/x-coffeescript","csharp":"text\/x-csharp","d":"d","ecmascript":"javascript","erlang":"erlang","groovy":"text\/x-groovy","haskell":"text\/x-haskell","haxe":"text\/x-haxe","html4strict":"htmlmixed","java":"text\/x-java","java5":"text\/x-java","jquery":"javascript","mirc":"mirc","mysql":"sql","ocaml":"text\/x-ocaml","pascal":"text\/x-pascal","perl":"perl","perl6":"perl","plsql":"sql","properties":"text\/x-properties","q":"text\/x-q","scala":"scala","scheme":"text\/x-scheme","tcl":"text\/x-tcl","vb":"text\/x-vb","verilog":"text\/x-verilog","yaml":"text\/x-yaml","z80":"text\/x-z80"}