# create and compile the model
model = DiffusionModel(image_size, widths, block_depth)
# below tensorflow 2.9:
# pip install tensorflow_addons
# import tensorflow_addons as tfa
# optimizer=tfa.optimizers.AdamW
model.compile(
optimizer=keras.optimizers.experimental.AdamW(
learning_rate=learning_rate, weight_decay=weight_decay
),
loss=keras.losses.mean_absolute_error,
)
# pixelwise mean absolute error is used as loss
# save the best model based on the validation KID metric
checkpoint_path = "checkpoints/diffusion_model"
checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(
filepath=checkpoint_path,
save_weights_only=True,
monitor="val_kid",
mode="min",
save_best_only=True,
)
# calculate mean and variance of training dataset for normalization
model.normalizer.adapt(train_dataset)
# run training and plot generated images periodically
model.fit(
train_dataset,
epochs=num_epochs,
validation_data=val_dataset,
callbacks=[
keras.callbacks.LambdaCallback(on_epoch_end=model.plot_images),
checkpoint_callback,
],
)
{"html5":"htmlmixed","css":"css","javascript":"javascript","php":"php","python":"python","ruby":"ruby","lua":"text\/x-lua","bash":"text\/x-sh","go":"go","c":"text\/x-csrc","cpp":"text\/x-c++src","diff":"diff","latex":"stex","sql":"sql","xml":"xml","apl":"apl","asterisk":"asterisk","c_loadrunner":"text\/x-csrc","c_mac":"text\/x-csrc","coffeescript":"text\/x-coffeescript","csharp":"text\/x-csharp","d":"d","ecmascript":"javascript","erlang":"erlang","groovy":"text\/x-groovy","haskell":"text\/x-haskell","haxe":"text\/x-haxe","html4strict":"htmlmixed","java":"text\/x-java","java5":"text\/x-java","jquery":"javascript","mirc":"mirc","mysql":"sql","ocaml":"text\/x-ocaml","pascal":"text\/x-pascal","perl":"perl","perl6":"perl","plsql":"sql","properties":"text\/x-properties","q":"text\/x-q","scala":"scala","scheme":"text\/x-scheme","tcl":"text\/x-tcl","vb":"text\/x-vb","verilog":"text\/x-verilog","yaml":"text\/x-yaml","z80":"text\/x-z80"}