template __global__ void matrixMulCUDA_3_2w1w(float* C, float* A, float* B, int wA, int wB) { // Block index int bx = blockIdx.x; int by = blockIdx.y; // Thread index int tx = threadIdx.x; int ty = threadIdx.y; for (int x = 1; x <= 2; x++) { // Index of the first sub-matrix of A processed by the block int aBegin = wA * BLOCK_SIZE * by; // Index of the last sub-matrix of A processed by the block int aEnd = aBegin + wA - 1; // Step size used to iterate through the sub-matrices of A int aStep = BLOCK_SIZE; // Index of the first sub-matrix of B processed by the block int bBegin = BLOCK_SIZE * bx; // Step size used to iterate through the sub-matrices of B int bStep = BLOCK_SIZE * wB; // Csub is used to store the element of the block sub-matrix // that is computed by the thread float Csub = 0; // Loop over all the sub-matrices of A and B // required to compute the block sub-matrix for (int a = aBegin, b = bBegin; a <= aEnd; a += aStep, b += bStep) { // Declaration of the shared memory array As used to // store the sub-matrix of A __shared__ float As[BLOCK_SIZE / 2][BLOCK_SIZE]; // Declaration of the shared memory array Bs used to // store the sub-matrix of B __shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE]; // Load the matrices from device memory // to shared memory; each thread loads // one element of each matrix if (x == 1) { if (ty < BLOCK_SIZE / 2) { As[ty][tx] = A[a + wA * ty + tx]; } Bs[ty][tx] = B[b + wB * ty + tx]; } else if (x == 2) { if (ty >= BLOCK_SIZE / 2) { As[ty][tx] = A[a + wA * ty + tx]; } } // Synchronize to make sure the matrices are loaded __syncthreads(); // Multiply the two matrices together; // 2 thread computes one element // of the block sub-matrix #pragma unroll for (int k = 0; k < BLOCK_SIZE / 2; k++) { if (ty < BLOCK_SIZE / 2) { Csub += As[ty][k] * Bs[k][tx]; } else { Csub += As[ty][k + BLOCK_SIZE / 2] * Bs[k + BLOCK_SIZE / 2][tx]; } } // Synchronize to make sure that the preceding // computation is done before loading two new // sub-matrices of A and B in the next iteration __syncthreads(); } // Write the block sub-matrix to device memory; // each thread writes one element int c = wB * BLOCK_SIZE * by + BLOCK_SIZE * bx; if (ty < BLOCK_SIZE / 2 && x == 1) { C[c + wB * ty + tx] += Csub; } else if (ty >= BLOCK_SIZE / 2 && x == 2) { C[c + wB * ty + tx] += Csub; } } }