template __global__ void matrixMulCUDA_4_1w2w(float* C, float* A, float* B, int wA, int wB) { // Block index int bx = blockIdx.x; int by = blockIdx.y; // Thread index int tx = threadIdx.x; int ty = threadIdx.y; // Index of the first sub-matrix of A processed by the block int aBegin = wA * BLOCK_SIZE * by; // Index of the last sub-matrix of A processed by the block int aEnd = aBegin + wA - 1; // Step size used to iterate through the sub-matrices of A int aStep = BLOCK_SIZE; // Index of the first sub-matrix of B processed by the block int bBegin = BLOCK_SIZE * bx; // Step size used to iterate through the sub-matrices of B int bStep = BLOCK_SIZE * wB; // Csub is used to store the element of the block sub-matrix // that is computed by the thread float CSub[2] = { 0,0 }; // Declaration of the shared memory arrays used to // store the sub-matrix of A __shared__ float Aa[BLOCK_SIZE][BLOCK_SIZE]; __shared__ float Ab[BLOCK_SIZE][BLOCK_SIZE]; // Declaration of the shared memory arrays used to // store the sub-matrix of B __shared__ float Ba[BLOCK_SIZE][2 * BLOCK_SIZE]; __shared__ float Bb[BLOCK_SIZE][2 * BLOCK_SIZE]; // Initial load Aa[ty][tx] = A[aBegin + wA * ty + tx]; Ba[ty][tx] = B[bBegin + wB * ty + tx]; Ba[ty][tx + BLOCK_SIZE] = B[bBegin + wB * ty + tx + BLOCK_SIZE]; // Synchronize to make sure that initial matrices are loaded __syncthreads(); // Loop over all the sub-matrices of A and B // required to compute the block sub-matrix for (int a = aBegin, b = bBegin; a <= aEnd; a += aStep, b += bStep) { if (bx % 2 != 0) { break; } // copy contents betweeen shared matrixes Ab[ty][tx] = Aa[ty][tx]; Bb[ty][tx] = Ba[ty][tx]; Bb[ty][tx + BLOCK_SIZE] = Ba[ty][tx + BLOCK_SIZE]; // Synchronize to make sure the matrices are loaded __syncthreads(); // Load the matrices from device memory // to shared memory; each thread loads // two elements of each matrix if (a + aStep < aEnd) { Aa[ty][tx] = A[a + wA * ty + tx]; Ba[ty][tx] = B[b + wB * ty + tx]; Ba[ty][tx + BLOCK_SIZE] = B[b * wB * ty + tx + BLOCK_SIZE]; } // Multiply the two matrices together; // each thread computes one element // of the block sub-matrix #pragma unroll for (int k = 0; k < BLOCK_SIZE; ++k) { CSub[0] += Ab[ty][k] * Bb[k][tx]; CSub[1] += Ab[ty][k] * Bb[k][tx + BLOCK_SIZE]; } // Synchronize to make sure that the preceding // computation is done before loading two new // sub-matrices of A and B in the next iteration __syncthreads(); } // Write the block sub-matrix to device memory; // each thread writes one element int c = wB * BLOCK_SIZE * by + BLOCK_SIZE * bx; C[c + wB * ty + tx] = CSub[0]; C[c + wB * ty + tx + BLOCK_SIZE] = CSub[1]; }