documentclass[20pt,a4paper]{extarticle} usepackage[a4paper,margin=6mm]{geometry} usepackage{amsmath} usepackage{hyperref} title{LaTeX Mathematics Examples} author{Prof Tony Roberts} begin{document} maketitle tableofcontents section{Delimiters} See how the delimiters are of reasonable size in these examples [ left(a+bright)left[1-frac{b}{a+b}right]=a,, ] [ sqrt{|xy|}leqleft|frac{x+y}{2}right|, ] even when there is no matching delimiter [ int_a^bufrac{d^2v}{dx^2},dx =left.ufrac{dv}{dx}right|_a^b -int_a^bfrac{du}{dx}frac{dv}{dx},dx. ] section{Spacing} Differentials often need a bit of help with their spacing as in [ iint xy^2,dx,dy =frac{1}{6}x^2y^3, ] whereas vector problems often lead to statements such as [ u=frac{-y}{x^2+y^2},,quad v=frac{x}{x^2+y^2},,quadtext{and}quad w=0,. ] Occasionally one gets horrible line breaks when using a list in mathematics such as listing the first twelve primes (2,3,5,7,11,13,17,19,23,29,31,37),. In such cases, perhaps include verb|mathcode`,="213B| inside the inline maths environment so that the list breaks: (mathcode`,="213B 2,3,5,7,11,13,17,19,23,29,31,37),. Be discerning about when to do this as the spacing is different. section{Arrays} Arrays of mathematics are typeset using one of the matrix environments as in [ begin{bmatrix} 1 & x & 0 \ 0 & 1 & -1 end{bmatrix}begin{bmatrix} 1 \ y \ 1 end{bmatrix} =begin{bmatrix} 1+xy \ y-1 end{bmatrix}. ] Case statements use cases: [ |x|=begin{cases} x, & text{if }xgeq 0,, \ -x, & text{if }x< 0,. end{cases} ] Many arrays have lots of dots all over the place as in [ begin{matrix} -2 & 1 & 0 & 0 & cdots & 0 \ 1 & -2 & 1 & 0 & cdots & 0 \ 0 & 1 & -2 & 1 & cdots & 0 \ 0 & 0 & 1 & -2 & ddots & vdots \ vdots & vdots & vdots & ddots & ddots & 1 \ 0 & 0 & 0 & cdots & 1 & -2 end{matrix} ] section{Equation arrays} In the flow of a fluid film we may report begin{eqnarray} u_alpha & = & epsilon^2 kappa_{xxx} left( y-frac{1}{2}y^2 right), label{equ} \ v & = & epsilon^3 kappa_{xxx} y,, label{eqv} \ p & = & epsilon kappa_{xx},. label{eqp} end{eqnarray} Alternatively, the curl of a vector field $(u,v,w)$ may be written with only one equation number: begin{eqnarray} omega_1 & = & frac{partial w}{partial y}-frac{partial v}{partial z},, nonumber \ omega_2 & = & frac{partial u}{partial z}-frac{partial w}{partial x},, label{eqcurl} \ omega_3 & = & frac{partial v}{partial x}-frac{partial u}{partial y},. nonumber end{eqnarray} Whereas a derivation may look like begin{eqnarray*} (pwedge q)vee(pwedgeneg q) & = & pwedge(qveeneg q) quadtext{by distributive law} \ & = & pwedge T quadtext{by excluded middle} \ & = & p quadtext{by identity} end{eqnarray*} section{Functions} Observe that trigonometric and other elementary functions are typeset properly, even to the extent of providing a thin space if followed by a single letter argument: [ exp(itheta)=costheta +isintheta,,quad sinh(log x)=frac{1}{2}left( x-frac{1}{x} right). ] With sub- and super-scripts placed properly on more complicated functions, [ lim_{qtoinfty}|f(x)|_q =max_{x}|f(x)|, ] and large operators, such as integrals and begin{eqnarray*} e^x & = & sum_{n=0}^infty frac{x^n}{n!} quadtext{where }n!=prod_{i=1}^n i,, \ overline{U_alpha} & = & bigcap_alpha U_alpha,. end{eqnarray*} In inline mathematics the scripts are correctly placed to the side in order to conserve vertical space, as in ( 1/(1-x)=sum_{n=0}^infty x^n. ) section{Accents} Mathematical accents are performed by a short command with one argument, such as [ tilde f(omega)=frac{1}{2pi} int_{-infty}^infty f(x)e^{-iomega x},dx,, ] or [ dot{vec omega}=vec rtimesvec I,. ] section{Command definition} newcommand{Ai}{operatorname{Ai}} The Airy function, $Ai(x)$, may be incorrectly defined as this integral [ Ai(x)=intexp(s^3+isx),ds,. ] newcommand{D}[2]{frac{partial #2}{partial #1}} newcommand{DD}[2]{frac{partial^2 #2}{partial #1^2}} renewcommand{vec}[1]{boldsymbol{#1}} This vector identity serves nicely to illustrate two of the new commands: [ vecnablatimesvec q =vec ileft(D yw-D zvright) +vec jleft(D zu-D xwright) +vec kleft(D xv-D yuright). ] Recall that typesetting multi-line mathematics is an art normally too hard for computer recipes. Nonetheless, if you need to be automatically flexible about multi-line mathematics, and you do not mind some rough typesetting, then perhaps invoke verb|parbox| to help as follows: % The verb|breqn| package is not yet reliable enough for general use. newcommand{parmath}[2][0.8linewidth]{parbox[t]{#1}% {raggedrightlinespread{1.2}selectfont(#2)}} [ u_1=parmath{ -2 gamma epsilon^{2} s_{2}+mu epsilon^{3} big( frac{3}{8} s_{2}+frac{1}{8} s_{1} ibig)+epsilon^{3} big( -frac{81}{32} s_{4} s_{2}^{2}-frac{27}{16} s_{4} s_{2} s_{1} i+frac{9}{32} s_{4} s_{1}^{2}+frac{27}{32} s_{3} s_{2}^{2} i-frac{9}{16} s_{3} s_{2} s_{1}-frac{3}{32} s_{3} s_{1}^{2} ibig) +int_a^b 1-2x+3x^2-4x^3,dx } ] Also, sometimes use verb|parbox| to typeset multiline entries in tables. section{Theorems et al.} newtheorem{theorem}{Theorem} newtheorem{corollary}[theorem]{Corollary} newtheorem{lemma}[theorem]{Lemma} newtheorem{definition}[theorem]{Definition} begin{definition}[right-angled triangles] label{def:tri} A emph{right-angled triangle} is a triangle whose sides of length~(a), (b) and~(c), in some permutation of order, satisfies (a^2+b^2=c^2). end{definition} begin{lemma} The triangle with sides of length~(3), (4) and~(5) is right-angled. end{lemma} This lemma follows from the Definition~ref{def:tri} as (3^2+4^2=9+16=25=5^2). begin{theorem}[Pythagorean triplets] label{thm:py} Triangles with sides of length (a=p^2-q^2), (b=2pq) and (c=p^2+q^2) are right-angled triangles. end{theorem} Prove this Theorem~ref{thm:py} by the algebra (a^2+b^2 =(p^2-q^2)^2+(2pq)^2 =p^4-2p^2q^2+q^4+4p^2q^2 =p^4+2p^2q^2+q^4 =(p^2+q^2)^2 =c^2). end{document}