var cubeRotation = 0.0; main(); // // Start here // function main() { const canvas = document.querySelector('#glcanvas'); const gl = canvas.getContext('webgl'); // If we don't have a GL context, give up now if (!gl) { alert('Unable to initialize WebGL. Your browser or machine may not support it.'); return; } const shaderProgramFactory = new ShaderProgramFactory(gl); const shaderProgram = shaderProgramFactory.createShaderProgram(); // Collect all the info needed to use the shader program. // Look up which attributes our shader program is using // for aVertexPosition, aVertexNormal, aTextureCoord, // and look up uniform locations. const programInfo = { program: shaderProgram, attribLocations: { vertexPosition: gl.getAttribLocation(shaderProgram, 'aVertexPosition'), vertexNormal: gl.getAttribLocation(shaderProgram, 'aVertexNormal'), textureCoord: gl.getAttribLocation(shaderProgram, 'aTextureCoord'), }, uniformLocations: { projectionMatrix: gl.getUniformLocation(shaderProgram, 'uProjectionMatrix'), modelViewMatrix: gl.getUniformLocation(shaderProgram, 'uModelViewMatrix'), normalMatrix: gl.getUniformLocation(shaderProgram, 'uNormalMatrix'), uSampler: gl.getUniformLocation(shaderProgram, 'uSampler'), }, }; // Here's where we call the routine that builds all the // objects we'll be drawing. const buffers = initBuffers(gl); const texture = loadTexture(gl, 'cubetexture.png'); var then = 0; // Draw the scene repeatedly function render(now) { now *= 0.001; // convert to seconds const deltaTime = now - then; then = now; drawScene(gl, programInfo, buffers, texture, deltaTime); requestAnimationFrame(render); } requestAnimationFrame(render); } // // initBuffers // // Initialize the buffers we'll need. For this demo, we just // have one object -- a simple three-dimensional cube. // function initBuffers(gl) { // Create a buffer for the cube's vertex positions. const positionBuffer = gl.createBuffer(); // Select the positionBuffer as the one to apply buffer // operations to from here out. gl.bindBuffer(gl.ARRAY_BUFFER, positionBuffer); // Now create an array of positions for the cube. const positions = [ // Front face -1.0, -1.0, 1.0, 1.0, -1.0, 1.0, 1.0, 1.0, 1.0, -1.0, 1.0, 1.0, // Back face -1.0, -1.0, -1.0, -1.0, 1.0, -1.0, 1.0, 1.0, -1.0, 1.0, -1.0, -1.0, // Top face -1.0, 1.0, -1.0, -1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, -1.0, // Bottom face -1.0, -1.0, -1.0, 1.0, -1.0, -1.0, 1.0, -1.0, 1.0, -1.0, -1.0, 1.0, // Right face 1.0, -1.0, -1.0, 1.0, 1.0, -1.0, 1.0, 1.0, 1.0, 1.0, -1.0, 1.0, // Left face -1.0, -1.0, -1.0, -1.0, -1.0, 1.0, -1.0, 1.0, 1.0, -1.0, 1.0, -1.0, ]; // Now pass the list of positions into WebGL to build the // shape. We do this by creating a Float32Array from the // JavaScript array, then use it to fill the current buffer. gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(positions), gl.STATIC_DRAW); // Set up the normals for the vertices, so that we can compute lighting. const normalBuffer = gl.createBuffer(); gl.bindBuffer(gl.ARRAY_BUFFER, normalBuffer); const vertexNormals = [ // Front 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, // Back 0.0, 0.0, -1.0, 0.0, 0.0, -1.0, 0.0, 0.0, -1.0, 0.0, 0.0, -1.0, // Top 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, // Bottom 0.0, -1.0, 0.0, 0.0, -1.0, 0.0, 0.0, -1.0, 0.0, 0.0, -1.0, 0.0, // Right 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, // Left -1.0, 0.0, 0.0, -1.0, 0.0, 0.0, -1.0, 0.0, 0.0, -1.0, 0.0, 0.0 ]; gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(vertexNormals), gl.STATIC_DRAW); // Now set up the texture coordinates for the faces. const textureCoordBuffer = gl.createBuffer(); gl.bindBuffer(gl.ARRAY_BUFFER, textureCoordBuffer); const textureCoordinates = [ // Front 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0, // Back 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0, // Top 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0, // Bottom 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0, // Right 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0, // Left 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0, ]; gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(textureCoordinates), gl.STATIC_DRAW); // Build the element array buffer; this specifies the indices // into the vertex arrays for each face's vertices. const indexBuffer = gl.createBuffer(); gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, indexBuffer); // This array defines each face as two triangles, using the // indices into the vertex array to specify each triangle's // position. const indices = [ 0, 1, 2, 0, 2, 3, // front 4, 5, 6, 4, 6, 7, // back 8, 9, 10, 8, 10, 11, // top 12, 13, 14, 12, 14, 15, // bottom 16, 17, 18, 16, 18, 19, // right 20, 21, 22, 20, 22, 23, // left ]; // Now send the element array to GL gl.bufferData(gl.ELEMENT_ARRAY_BUFFER, new Uint16Array(indices), gl.STATIC_DRAW); return { position: positionBuffer, normal: normalBuffer, textureCoord: textureCoordBuffer, indices: indexBuffer, }; } // // Initialize a texture and load an image. // When the image finished loading copy it into the texture. // function loadTexture(gl, url) { const texture = gl.createTexture(); gl.bindTexture(gl.TEXTURE_2D, texture); // Because images have to be download over the internet // they might take a moment until they are ready. // Until then put a single pixel in the texture so we can // use it immediately. When the image has finished downloading // we'll update the texture with the contents of the image. const level = 0; const internalFormat = gl.RGBA; const width = 1; const height = 1; const border = 0; const srcFormat = gl.RGBA; const srcType = gl.UNSIGNED_BYTE; const pixel = new Uint8Array([0, 0, 255, 255]); // opaque blue gl.texImage2D(gl.TEXTURE_2D, level, internalFormat, width, height, border, srcFormat, srcType, pixel); const image = new Image(); image.onload = function() { gl.bindTexture(gl.TEXTURE_2D, texture); gl.texImage2D(gl.TEXTURE_2D, level, internalFormat, srcFormat, srcType, image); // WebGL1 has different requirements for power of 2 images // vs non power of 2 images so check if the image is a // power of 2 in both dimensions. if (isPowerOf2(image.width) && isPowerOf2(image.height)) { // Yes, it's a power of 2. Generate mips. gl.generateMipmap(gl.TEXTURE_2D); } else { // No, it's not a power of 2. Turn of mips and set // wrapping to clamp to edge gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE); gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE); gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.LINEAR); } }; image.src = url; return texture; } function isPowerOf2(value) { return (value & (value - 1)) == 0; } // // Draw the scene. // function drawScene(gl, programInfo, buffers, texture, deltaTime) { gl.clearColor(0.0, 0.0, 0.0, 1.0); // Clear to black, fully opaque gl.clearDepth(1.0); // Clear everything gl.enable(gl.DEPTH_TEST); // Enable depth testing gl.depthFunc(gl.LEQUAL); // Near things obscure far things // Clear the canvas before we start drawing on it. gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT); // Create a perspective matrix, a special matrix that is // used to simulate the distortion of perspective in a camera. // Our field of view is 45 degrees, with a width/height // ratio that matches the display size of the canvas // and we only want to see objects between 0.1 units // and 100 units away from the camera. const fieldOfView = 45 * Math.PI / 180; // in radians const aspect = gl.canvas.clientWidth / gl.canvas.clientHeight; const zNear = 0.1; const zFar = 100.0; const projectionMatrix = mat4.create(); // note: glmatrix.js always has the first argument // as the destination to receive the result. mat4.perspective(projectionMatrix, fieldOfView, aspect, zNear, zFar); // Set the drawing position to the "identity" point, which is // the center of the scene. const modelViewMatrix = mat4.create(); // Now move the drawing position a bit to where we want to // start drawing the square. mat4.translate(modelViewMatrix, // destination matrix modelViewMatrix, // matrix to translate [-0.0, 0.0, -6.0]); // amount to translate mat4.rotate(modelViewMatrix, // destination matrix modelViewMatrix, // matrix to rotate cubeRotation, // amount to rotate in radians [0, 0, 1]); // axis to rotate around (Z) mat4.rotate(modelViewMatrix, // destination matrix modelViewMatrix, // matrix to rotate cubeRotation * .7,// amount to rotate in radians [0, 1, 0]); // axis to rotate around (X) const normalMatrix = mat4.create(); mat4.invert(normalMatrix, modelViewMatrix); mat4.transpose(normalMatrix, normalMatrix); // Tell WebGL how to pull out the positions from the position // buffer into the vertexPosition attribute { const numComponents = 3; const type = gl.FLOAT; const normalize = false; const stride = 0; const offset = 0; gl.bindBuffer(gl.ARRAY_BUFFER, buffers.position); gl.vertexAttribPointer( programInfo.attribLocations.vertexPosition, numComponents, type, normalize, stride, offset); gl.enableVertexAttribArray( programInfo.attribLocations.vertexPosition); } // Tell WebGL how to pull out the texture coordinates from // the texture coordinate buffer into the textureCoord attribute. { const numComponents = 2; const type = gl.FLOAT; const normalize = false; const stride = 0; const offset = 0; gl.bindBuffer(gl.ARRAY_BUFFER, buffers.textureCoord); gl.vertexAttribPointer( programInfo.attribLocations.textureCoord, numComponents, type, normalize, stride, offset); gl.enableVertexAttribArray( programInfo.attribLocations.textureCoord); } // Tell WebGL how to pull out the normals from // the normal buffer into the vertexNormal attribute. { const numComponents = 3; const type = gl.FLOAT; const normalize = false; const stride = 0; const offset = 0; gl.bindBuffer(gl.ARRAY_BUFFER, buffers.normal); gl.vertexAttribPointer( programInfo.attribLocations.vertexNormal, numComponents, type, normalize, stride, offset); gl.enableVertexAttribArray( programInfo.attribLocations.vertexNormal); } // Tell WebGL which indices to use to index the vertices gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, buffers.indices); // Tell WebGL to use our program when drawing gl.useProgram(programInfo.program); // Set the shader uniforms gl.uniformMatrix4fv( programInfo.uniformLocations.projectionMatrix, false, projectionMatrix); gl.uniformMatrix4fv( programInfo.uniformLocations.modelViewMatrix, false, modelViewMatrix); gl.uniformMatrix4fv( programInfo.uniformLocations.normalMatrix, false, normalMatrix); // Specify the texture to map onto the faces. // Tell WebGL we want to affect texture unit 0 gl.activeTexture(gl.TEXTURE0); // Bind the texture to texture unit 0 gl.bindTexture(gl.TEXTURE_2D, texture); // Tell the shader we bound the texture to texture unit 0 gl.uniform1i(programInfo.uniformLocations.uSampler, 0); { const vertexCount = 36; const type = gl.UNSIGNED_SHORT; const offset = 0; gl.drawElements(gl.TRIANGLES, vertexCount, type, offset); } // Update the rotation for the next draw cubeRotation += deltaTime; }