/// /// @file /// @author Julius Pettersson /// @copyright MIT/Expat License. /// @brief LZW file compressor /// @version 5 /// @remark This version borrows heavily from Juha Nieminen's work. /// /// This is the C++11 implementation of a Lempel-Ziv-Welch single-file command-line compressor. /// It uses the simpler fixed-width code compression method. /// It was written with Doxygen comments. /// /// @see http://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Welch /// @see http://marknelson.us/2011/11/08/lzw-revisited/ /// @see http://www.cs.duke.edu/csed/curious/compression/lzw.html /// @see http://warp.povusers.org/EfficientLZW/index.html /// @see http://en.cppreference.com/ /// @see http://www.doxygen.org/ /// #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /// Type used to store and retrieve codes. using CodeType = std::uint16_t; namespace globals { /// Dictionary Maximum Size (when reached, the dictionary will be reset) const CodeType dms {std::numeric_limits::max()}; } // namespace globals /// /// @brief Encoder's custom dictionary type. /// class EncoderDictionary { /// /// @brief Binary search tree node. /// struct Node { /// /// @brief Default constructor. /// @param c byte that the Node will contain /// explicit Node(char c): first(globals::dms), c(c), left(globals::dms), right(globals::dms) { } CodeType first; ///< Code of first child string. char c; ///< Byte. CodeType left; ///< Code of child node with byte < `c`. CodeType right; ///< Code of child node with byte > `c`. }; public: /// /// @brief Default constructor. /// @details It builds the `initials` cheat sheet. /// EncoderDictionary() { const long int minc = std::numeric_limits::min(); const long int maxc = std::numeric_limits::max(); CodeType k {0}; for (long int c = minc; c <= maxc; ++c) initials[static_cast (c)] = k++; vn.reserve(globals::dms); reset(); } /// /// @brief Resets dictionary to its initial contents. /// @see `EncoderDictionary::EncoderDictionary()` /// void reset() { vn.clear(); const long int minc = std::numeric_limits::min(); const long int maxc = std::numeric_limits::max(); for (long int c = minc; c <= maxc; ++c) vn.push_back(Node(c)); } /// /// @brief Searches for a pair (`i`, `c`) and inserts the pair if it wasn't found. /// @param i code to search for /// @param c attached byte to search for /// @returns The index of the pair, if it was found. /// @retval globals::dms if the pair wasn't found /// CodeType search_and_insert(CodeType i, char c) { // dictionary's maximum size was reached if (vn.size() == globals::dms) reset(); if (i == globals::dms) return search_initials(c); const CodeType vn_size = vn.size(); CodeType ci {vn[i].first}; // Current Index if (ci != globals::dms) { while (true) if (c < vn[ci].c) { if (vn[ci].left == globals::dms) { vn[ci].left = vn_size; break; } else ci = vn[ci].left; } else if (c > vn[ci].c) { if (vn[ci].right == globals::dms) { vn[ci].right = vn_size; break; } else ci = vn[ci].right; } else // c == vn[ci].c return ci; } else vn[i].first = vn_size; vn.push_back(Node(c)); return globals::dms; } /// /// @brief Fakes a search for byte `c` in the one-byte area of the dictionary. /// @param c byte to search for /// @returns The code associated to the searched byte. /// CodeType search_initials(char c) const { return initials[static_cast (c)]; } private: /// Vector of nodes on top of which the binary search tree is implemented. std::vector vn; /// Cheat sheet for mapping one-byte strings to their codes. std::array initials; }; /// /// @brief Compresses the contents of `is` and writes the result to `os`. /// @param [in] is input stream /// @param [out] os output stream /// void compress(std::istream &is, std::ostream &os) { EncoderDictionary ed; CodeType i {globals::dms}; // Index char c; while (is.get(c)) { const CodeType temp {i}; if ((i = ed.search_and_insert(temp, c)) == globals::dms) { os.write(reinterpret_cast (&temp), sizeof (CodeType)); i = ed.search_initials(c); } } if (i != globals::dms) os.write(reinterpret_cast (&i), sizeof (CodeType)); } /// /// @brief Decompresses the contents of `is` and writes the result to `os`. /// @param [in] is input stream /// @param [out] os output stream /// void decompress(std::istream &is, std::ostream &os) { std::vector> dictionary; // "named" lambda function, used to reset the dictionary to its initial contents const auto reset_dictionary = [&dictionary] { dictionary.clear(); dictionary.reserve(globals::dms); const long int minc = std::numeric_limits::min(); const long int maxc = std::numeric_limits::max(); for (long int c = minc; c <= maxc; ++c) dictionary.push_back({globals::dms, static_cast (c)}); }; const auto rebuild_string = [&dictionary](CodeType k) -> const std::vector * { static std::vector s; // String s.clear(); // the length of a string cannot exceed the dictionary's number of entries s.reserve(globals::dms); while (k != globals::dms) { s.push_back(dictionary[k].second); k = dictionary[k].first; } std::reverse(s.begin(), s.end()); return &s; }; reset_dictionary(); CodeType i {globals::dms}; // Index CodeType k; // Key while (is.read(reinterpret_cast (&k), sizeof (CodeType))) { // dictionary's maximum size was reached if (dictionary.size() == globals::dms) reset_dictionary(); if (k > dictionary.size()) throw std::runtime_error("invalid compressed code"); const std::vector *s; // String if (k == dictionary.size()) { dictionary.push_back({i, rebuild_string(i)->front()}); s = rebuild_string(k); } else { s = rebuild_string(k); if (i != globals::dms) dictionary.push_back({i, s->front()}); } os.write(&s->front(), s->size()); i = k; } if (!is.eof() || is.gcount() != 0) throw std::runtime_error("corrupted compressed file"); } /// /// @brief Prints usage information and a custom error message. /// @param s custom error message to be printed /// @param su Show Usage information /// void print_usage(const std::string &s = "", bool su = true) { if (!s.empty()) std::cerr << "\nERROR: " << s << '\n'; if (su) { std::cerr << "\nUsage:\n"; std::cerr << "\tprogram -flag input_file output_file\n\n"; std::cerr << "Where `flag' is either `c' for compressing, or `d' for decompressing, and\n"; std::cerr << "`input_file' and `output_file' are distinct files.\n\n"; std::cerr << "Examples:\n"; std::cerr << "\tlzw_v5.exe -c license.txt license.lzw\n"; std::cerr << "\tlzw_v5.exe -d license.lzw new_license.txt\n"; } std::cerr << std::endl; } /// /// @brief Actual program entry point. /// @param argc number of command line arguments /// @param [in] argv array of command line arguments /// @retval EXIT_FAILURE for failed operation /// @retval EXIT_SUCCESS for successful operation /// int main(int argc, char *argv[]) { if (argc != 4) { print_usage("Wrong number of arguments."); return EXIT_FAILURE; } enum class Mode { Compress, Decompress }; Mode m; if (std::string(argv[1]) == "-c") m = Mode::Compress; else if (std::string(argv[1]) == "-d") m = Mode::Decompress; else { print_usage(std::string("flag `") + argv[1] + "' is not recognized."); return EXIT_FAILURE; } const std::size_t buffer_size {1024 * 1024}; // these custom buffers should be larger than the default ones const std::unique_ptr input_buffer(new char[buffer_size]); const std::unique_ptr output_buffer(new char[buffer_size]); std::ifstream input_file; std::ofstream output_file; input_file.rdbuf()->pubsetbuf(input_buffer.get(), buffer_size); input_file.open(argv[2], std::ios_base::binary); if (!input_file.is_open()) { print_usage(std::string("input_file `") + argv[2] + "' could not be opened."); return EXIT_FAILURE; } output_file.rdbuf()->pubsetbuf(output_buffer.get(), buffer_size); output_file.open(argv[3], std::ios_base::binary); if (!output_file.is_open()) { print_usage(std::string("output_file `") + argv[3] + "' could not be opened."); return EXIT_FAILURE; } try { input_file.exceptions(std::ios_base::badbit); output_file.exceptions(std::ios_base::badbit | std::ios_base::failbit); if (m == Mode::Compress) compress(input_file, output_file); else if (m == Mode::Decompress) decompress(input_file, output_file); } catch (const std::ios_base::failure &f) { print_usage(std::string("File input/output failure: ") + f.what() + '.', false); return EXIT_FAILURE; } catch (const std::exception &e) { print_usage(std::string("Caught exception: ") + e.what() + '.', false); return EXIT_FAILURE; } return EXIT_SUCCESS; }