re = (4/3)*6371000; hr = 5:5:100; ht = 500 lambda = 0.03 f = 10000 r = 10000 fi = pi p = (2/sqrt(3))*sqrt(re.*(ht+hr)+((r.^2)/4)) ksi = asin((2*re.*r.*(ht-hr))/p.^3) r1 = (r/2) - (p.*sin(ksi./3)) r2 = r - r1 phi1 = r1/re phi2 = r2/re R1 = sqrt((hr.^2)+4*re.*(re+hr).*(sin(phi1./2)).^2) R2 = sqrt((ht.^2)+4*re.*(re+ht).*(sin(phi2./2)).^2) Rd = sqrt(((ht-hr).^2)+4*(re+ht).*(re+hr).*(sin((phi1+phi2)/2)).^2) psi = asin((ht./R1)-(R1./(2*re))) deltaR = (4*R1.*R2.*(sin(psi)).^2)/(R1+R2+Rd) eps = 15 + ((i * 0.15)/(2*pi.*f)) arg1 = eps-((cos(psi)).^2); arg2 = sqrt(arg1); arg3 = sin(psi); arg4 = eps.*arg3; rv = (arg4-arg2)./(arg4+arg2) rh = (arg3-arg2)./(arg3+arg2); ro = rv/(exp(i*fi)) deltaPhi = ((2*pi)./lambda).*deltaR alpha = deltaPhi + fi F = abs(1+ro.*exp(i*alpha)) %figure(1) plot(hr, F) axis( [0 400 0 4]) grid on; xlabel('Wysokość nadajnika'); ylabel('Współczynnik F');