Facebook
From Moh, 4 Years ago, written in Python.
Embed
Download Paste or View Raw
Hits: 100
  1. # -*- coding: utf-8 -*-
  2. """
  3. Created on Thu Aug  6 18:27:54 2020
  4.  
  5. Chapter 6 PDE: Excercise 2: Metallic plate and heat sources
  6.  
  7. 2D Elliptic PDE
  8. """
  9.  
  10. """
  11. Heat distribution in a metallic plate
  12. size: 1m x 1m
  13. distribution:
  14.    d2T/d2x + d2T/d2y = f
  15.    f = -Q/k (constant)
  16. """
  17. from mpl_toolkits.mplot3d import Axes3D  # noqa: F401 unused import
  18. import numpy as np
  19. import scipy.sparse as sp
  20. from scipy.sparse.linalg import spsolve
  21. import matplotlib.pyplot as plt
  22. from matplotlib import cm
  23. from matplotlib.ticker import LinearLocator, FormatStrFormatter
  24.  
  25.  
  26. # define the space
  27. x0, xf , nX = 0.0, 1.0, 100
  28. y0, yf , nY = 0.0, 1.0, 100
  29.  
  30. # Vectors
  31. X = np.linspace(x0, xf, nX)
  32. Y = np.linspace(y0, yf, nY)
  33. h = X[1] - X[0]
  34. h2 = 1/(h**2)
  35. dh = 1/(2*h) # 1/2dx and 1/2dy
  36.  
  37. # Size of the system
  38. N = nX*nY
  39. A = sp.lil_matrix((N,N))
  40. b = np.zeros(N)
  41.  
  42. # Right hand side of the equation
  43. Q = 100 # kW/m3 heat generation
  44. k = 0.01 # W/mC thermal conductivity
  45. f = -Q/k
  46.  
  47. # nested loop for the node mapping
  48. for i in range(nX):
  49.     for j in range(nY):
  50.         # mapping relation center
  51.         K = j*nY + i
  52.         # neighbours p:plus m:minus
  53.         KpN = (j+1)*nY + i              
  54.         KpN2 = (j+2)*nY + i            
  55.         KmN = (j-1)*nY + i              
  56.         KmN2 = (j-2)*nY + i            
  57.         Kp1 = j*nY + (i+1)              
  58.         Kp2 = j*nY + (i+2)              
  59.         Km1 = j*nY + (i-1)              
  60.         Km2 = j*nY + (i-2)              
  61.        
  62.         # Check boundary conditions
  63.         # Fill matrix
  64.         # K,K is the diagonal value
  65.         # Robin Boundary Condition
  66.         if (i == 0):
  67.             A[K,K] = -3*dh - 5
  68.             A[K,Kp1] = 2/h
  69.             A[K,Kp2] = -dh
  70.             b[K] = -125.0  # degrees Celsius
  71.            
  72.         elif (i == nX-1):
  73.             A[K,K] = -3*dh + 5
  74.             A[K,Km1] = 2/h
  75.             A[K,Km2] = -dh
  76.             b[K] = 125.0  # degrees Celsius
  77.            
  78.         elif (j == 0):
  79.             A[K,K] = -3*dh - 5
  80.             A[K,KpN] = 2/h
  81.             A[K,KpN2] = -dh
  82.             b[K] = -125.0  # degrees Celsius
  83.            
  84.         elif (j == nY-1):
  85.             A[K,K] = -3*dh + 5
  86.             A[K,KmN] = 2/h
  87.             A[K,KmN2] = -dh
  88.             b[K] = 125.0  # degrees Celsius
  89.            
  90.         # Not Boundary Conditions
  91.         else:
  92.             A[K,K] = -4*h2
  93.             A[K,Kp1] = h2
  94.             A[K,Km1] = h2
  95.             A[K,KpN] = h2
  96.             A[K,KmN] = h2
  97.             b[K] = f
  98.  
  99.  
  100.  
  101. # nested loop for the Corner mapping
  102. # The loop is needed again to use the definition of K
  103. for i in range(nX):
  104.     for j in range(nY):
  105.         # mapping relation
  106.         K = j*nY + i
  107.         # neighbours p:plus m:minus
  108.         KpN = (j+1)*nY + i              
  109.         KmN = (j-1)*nY + i              
  110.         Kp1 = j*nY + (i+1)              
  111.         Km1 = j*nY + (i-1)              
  112.        
  113.         # Corner 1: 0,0; 2: 1,1; 3: -1,0; 4: -1,-1
  114.         if (i == 0 and j == 0):
  115.             b[K] = (b[Kp1]+b[KpN]+b[11])/3
  116.            
  117.         elif (i == (nX-1) and j == 0):
  118.             b[K] = (b[Km1]+b[KpN]+b[18])/3
  119.            
  120.         elif (i == 0 and j == (nY-1)):
  121.             b[K] = (b[Kp1]+b[KmN]+b[81])/3
  122.            
  123.         elif (i == (nX-1) and j == (nY-1)):
  124.             b[K] = (b[Km1]+b[KmN]+b[88])/3
  125.  
  126.  
  127. # Convert the LIL matrix to a CSR matrix
  128. A = A.tocsr()
  129.  
  130. # Solve using spsolve
  131. z = spsolve(A, b)
  132. Z = z.reshape(nX, nY)
  133. plt.contourf(X, Y, Z, cmap='inferno')
  134. plt.colorbar()
  135. plt.xlabel('X')
  136. plt.ylabel('Y')
  137.  
  138. # 3d plot
  139. X, Y = np.meshgrid(X, Y)
  140. fig = plt.figure()
  141. ax = fig.gca(projection='3d')
  142. surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1,
  143.                        cmap=cm.plasma, linewidth=0, antialiased=False)
  144. fig.colorbar(surf, shrink=0.5, aspect=5)
  145.  
  146.  
  147. plt.show()