# -*- coding: utf-8 -*-
"""
Created on Thu Aug 6 18:27:54 2020
Chapter 6 PDE: Excercise 2: Metallic plate and heat sources
2D Elliptic PDE
"""
"""
Heat distribution in a metallic plate
size: 1m x 1m
distribution:
d2T/d2x + d2T/d2y = f
f = -Q/k (constant)
"""
from mpl_toolkits.mplot3d import Axes3D # noqa: F401 unused import
import numpy as np
import scipy.sparse as sp
from scipy.sparse.linalg import spsolve
import matplotlib.pyplot as plt
from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter
# define the space
x0, xf , nX = 0.0, 1.0, 100
y0, yf , nY = 0.0, 1.0, 100
# Vectors
X = np.linspace(x0, xf, nX)
Y = np.linspace(y0, yf, nY)
h = X[1] - X[0]
h2 = 1/(h**2)
dh = 1/(2*h) # 1/2dx and 1/2dy
# Size of the system
N = nX*nY
A = sp.lil_matrix((N,N))
b = np.zeros(N)
# Right hand side of the equation
Q = 100 # kW/m3 heat generation
k = 0.01 # W/mC thermal conductivity
f = -Q/k
# nested loop for the node mapping
for i in range(nX):
for j in range(nY):
# mapping relation center
K = j*nY + i
# neighbours p:plus m:minus
KpN = (j+1)*nY + i
KpN2 = (j+2)*nY + i
KmN = (j-1)*nY + i
KmN2 = (j-2)*nY + i
Kp1 = j*nY + (i+1)
Kp2 = j*nY + (i+2)
Km1 = j*nY + (i-1)
Km2 = j*nY + (i-2)
# Check boundary conditions
# Fill matrix
# K,K is the diagonal value
# Robin Boundary Condition
if (i == 0):
A[K,K] = -3*dh - 5
A[K,Kp1] = 2/h
A[K,Kp2] = -dh
b[K] = -125.0 # degrees Celsius
elif (i == nX-1):
A[K,K] = -3*dh + 5
A[K,Km1] = 2/h
A[K,Km2] = -dh
b[K] = 125.0 # degrees Celsius
elif (j == 0):
A[K,K] = -3*dh - 5
A[K,KpN] = 2/h
A[K,KpN2] = -dh
b[K] = -125.0 # degrees Celsius
elif (j == nY-1):
A[K,K] = -3*dh + 5
A[K,KmN] = 2/h
A[K,KmN2] = -dh
b[K] = 125.0 # degrees Celsius
# Not Boundary Conditions
else:
A[K,K] = -4*h2
A[K,Kp1] = h2
A[K,Km1] = h2
A[K,KpN] = h2
A[K,KmN] = h2
b[K] = f
# nested loop for the Corner mapping
# The loop is needed again to use the definition of K
for i in range(nX):
for j in range(nY):
# mapping relation
K = j*nY + i
# neighbours p:plus m:minus
KpN = (j+1)*nY + i
KmN = (j-1)*nY + i
Kp1 = j*nY + (i+1)
Km1 = j*nY + (i-1)
# Corner 1: 0,0; 2: 1,1; 3: -1,0; 4: -1,-1
if (i == 0 and j == 0):
b[K] = (b[Kp1]+b[KpN]+b[11])/3
elif (i == (nX-1) and j == 0):
b[K] = (b[Km1]+b[KpN]+b[18])/3
elif (i == 0 and j == (nY-1)):
b[K] = (b[Kp1]+b[KmN]+b[81])/3
elif (i == (nX-1) and j == (nY-1)):
b[K] = (b[Km1]+b[KmN]+b[88])/3
# Convert the LIL matrix to a CSR matrix
A = A.tocsr()
# Solve using spsolve
z = spsolve(A, b)
Z = z.reshape(nX, nY)
plt.contourf(X, Y, Z, cmap='inferno')
plt.colorbar()
plt.xlabel('X')
plt.ylabel('Y')
# 3d plot
X, Y = np.meshgrid(X, Y)
fig = plt.figure()
ax = fig.gca(projection='3d')
surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1,
cmap=cm.plasma, linewidth=0, antialiased=False)
fig.colorbar(surf, shrink=0.5, aspect=5)
plt.show()