Facebook
From hi, 11 Months ago, written in Python.
Embed
Download Paste or View Raw
Hits: 185
  1. import numpy as np
  2. import matplotlib.pyplot as plt
  3. # a
  4. x = np.array([1850, 1875, 1900, 1925, 1950, 1975, 2000])
  5. y = np.array([285.2, 288.6, 295.7, 305.3, 311.3, 331.36,
  6.               369.64])
  7. h = 25
  8. n = len(x) - 1
  9.  
  10. z = np.zeros(n-1)
  11. for i in range(n-1):
  12.     z[i] = (y[i] - 2 * y[i+1] + y[i+2]) * 6 / (h**2)
  13.  
  14. M = np.zeros(n+1)
  15. a = np.zeros(n)
  16. b = np.zeros(n)
  17. c = np.zeros(n)
  18. d = np.zeros(n)
  19.  
  20. z_matrix = z
  21.  
  22. matrix = (np.diag(4*np.ones(n-1)) + np.diag(np.ones(n-2), 1)
  23.           + np.diag(np.ones(n-2), -1))
  24.  
  25. inverse_matrix = np.linalg.inv(matrix)
  26. M_matrix = np.dot(inverse_matrix, z_matrix)
  27. for i in range(n-1):
  28.     M[i+1] = M_matrix[i]
  29. M[0] = 0
  30. M[n] = 0
  31.  
  32. for i in range(n):
  33.     a[i] = (M[i+1] - M[i]) / (6 * h)
  34.     b[i] = M[i] / 2
  35.     c[i] = (y[i+1] - y[i]) / h - h * (M[i+1] + 2 * M[i]) / 6
  36.     d[i] = y[i]
  37.  
  38. for i in range(n):
  39.     print(f"S_{i+1}(x) = {a[i]:.4e}(x - {x[i]})^3 "
  40.           f"+ {b[i]:.4e}(x - {x[i]})^2 + {c[i]:.4e}(x - {x[i]}) "
  41.           f"+ {d[i]:.4e}, for {x[i]} <= x < {x[i+1]}")
  42.  
  43. year_estimates = [1990, 2010]
  44. spline_estimates = np.zeros(2)
  45. for j in range(2):
  46.     year = year_estimates[j]
  47.     i = int((year - 1850) / h)
  48.     if i >= n:
  49.         i = n - 1
  50.     dx = year - x[i]
  51.     spline_estimates[j] = (a[i]*dx**3 + b[i]*dx**2
  52.                            + c[i]*dx + d[i])
  53.  
  54. print(f"\nCO2 concentration estimate for 1990="
  55.       f" {spline_estimates[0]:.2f} ppm")
  56. print(f"CO2 concentration estimate for 2010= "
  57.       f"{spline_estimates[1]:.2f} ppm")
  58.  
  59. print("a coefficients=", a)
  60. print("b coefficients=", b)
  61. print("c coefficients=", c)
  62. print("d coefficients=", d)
  63. print("M values=", M)
  64.  
  65. xx = np.linspace(x[0], x[-1], 1000)
  66. yy = np.zeros(len(xx))
  67. for k in range(len(xx)):
  68.     year = xx[k]
  69.     i = int((year - 1850) / h)
  70.     if i >= n:
  71.         i = n - 1
  72.     dx = year - x[i]
  73.     yy[k] = a[i]*dx**3 + b[i]*dx**2 + c[i]*dx + d[i]
  74.  
  75. plt.figure(figsize=(12, 6))
  76. plt.plot(x, y, 'o', label='Original data')
  77. plt.plot(xx, yy, label='Cubic spline')
  78. plt.xlabel('Year')
  79. plt.ylabel('CO2 Concentration (ppm)')
  80. plt.title('Natural Cubic Spline Interpolation of CO2 Concentration')
  81. plt.legend()
  82. plt.grid(True)
  83. plt.show()
  84.